This implementation is from CP4 Book.
Explanation : to be added.
// Union-Find Disjoint Sets Library written in OOP manner, using both path compression and union by rank heuristics
#include <bits/stdc++.h>
using namespace std;
typedef vector<int> vi;
class UnionFind { // OOP style
private:
vi p, rank, setSize; // vi p is the key part
int numSets;
public:
UnionFind(int N) {
p.assign(N, 0); for (int i = 0; i < N; ++i) p[i] = i;
rank.assign(N, 0); // optional speedup
setSize.assign(N, 1); // optional feature
numSets = N; // optional feature
}
int findSet(int i) { return (p[i] == i) ? i : (p[i] = findSet(p[i])); }
bool isSameSet(int i, int j) { return findSet(i) == findSet(j); }
int numDisjointSets() { return numSets; } // optional
int sizeOfSet(int i) { return setSize[findSet(i)]; } // optional
void unionSet(int i, int j) {
if (isSameSet(i, j)) return; // i and j are in same set
int x = findSet(i), y = findSet(j); // find both rep items
if (rank[x] > rank[y]) swap(x, y); // keep x 'shorter' than y
p[x] = y; // set x under y
if (rank[x] == rank[y]) ++rank[y]; // optional speedup
setSize[y] += setSize[x]; // combine set sizes at y
--numSets; // a union reduces numSets
}
};
int main() {
printf("Assume that there are 5 disjoint sets initially\n");
UnionFind UF(5); // create 5 disjoint sets
printf("%d\n", UF.numDisjointSets()); // 5
UF.unionSet(0, 1);
printf("%d\n", UF.numDisjointSets()); // 4
UF.unionSet(2, 3);
printf("%d\n", UF.numDisjointSets()); // 3
UF.unionSet(4, 3);
printf("%d\n", UF.numDisjointSets()); // 2
printf("isSameSet(0, 3) = %d\n", UF.isSameSet(0, 3)); // will return 0 (false)
printf("isSameSet(4, 3) = %d\n", UF.isSameSet(4, 3)); // will return 1 (true)
for (int i = 0; i < 5; i++) // findSet will return 1 for {0, 1} and 3 for {2, 3, 4}
printf("findSet(%d) = %d, sizeOfSet(%d) = %d\n", i, UF.findSet(i), i, UF.sizeOfSet(i));
UF.unionSet(0, 3);
printf("%d\n", UF.numDisjointSets()); // 1
for (int i = 0; i < 5; i++) // findSet will return 3 for {0, 1, 2, 3, 4}
printf("findSet(%d) = %d, sizeOfSet(%d) = %d\n", i, UF.findSet(i), i, UF.sizeOfSet(i));
return 0;
}